
Cometa
A Metadata Combination Framework

in support of Nowcasting R&D activities

Master Thesis

Lorenzo Clementi
April 2008

Thesis supervisors:

Prof. Dr. Rolf Ingold
DIVA Group

and
Dipl. Phys. Igor Giunta

MeteoSwiss

DIVA Group
Department of Computer Science

University of Fribourg (Switzerland)

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology
MeteoSwiss

“The trouble with weather forecasting is that it’s right too often for us to ignore it
and wrong too often for us to rely on it.”

- Patrick Young

Acknowledgements

First, I would like to thank Prof. Rolf Ingold for
giving me the opportunity to do my Master thesis at
MeteoSwiss and for supervising my work. Thank you
very much also to Gianmario Galli and Igor Giunta at
MeteoSwiss, that conceived the framework described in
this document.
A special thank to Igor for his essential support during
my work in Locarno and for the knowledge he passed on
to me. Thanks very much to Luca for the challenging
jogging sessions and to all the MeteoSwiss co-workers in
Locarno for the very nice period I spent there.
Last but not least, I would like to thank my family that
always supported me during my studies.
This work is dedicated to my grandfather.

ii

Abstract

Cometa is a flexible framework which facilitates the characterisation of meteorological
data by means of metadata and supports the consistent combination of very different
kinds of data. Its goal is to develop and validate integrated approaches in the context of
the meteorological forecasting class called nowcasting. Cometa is conceived extensible,
allowing to easily incorporate further or more refined data characteristics and combination
methods. XML files are used to describe data types and processing information, while
a set of Java classes composing the framework provides functionalities to verify data
consistency and to manage data combination. In addition, it allows to improve existing
algorithms through parameter perturbation functionalities.

Its capabilities have been tested through a concrete use case. A synergetic application,
which uses both radar and satellite observations has been implemented and exploited in
case of thunderstorms developments over the Alpine region. High quality instantaneous
precipitation fields, retrieved by radar, have been forecasted according to dynamical
features, retrieved by satellite.

Cometa proved to be a valid tool for setting up and automating large R&D sets
of experiments with little effort; first quality assessments shed a light on potential
meteorological developments of this nowcasting technique.

Keywords: Nowcasting, XML Metadata, JAXB, Radar and Satellite data forecasting

iii

Table of Contents

1 Introduction 2
1.1 Motivation and goal . 2
1.2 A starting example . 3
1.3 Work organisation and schedule . 3
1.4 Structure of this document . 3
1.5 About this document . 3

1.5.1 Project name . 4
1.5.2 Notations and Conventions . 4

2 Framework overview 6
2.1 Nowcasting, meteorological background 6

2.1.1 State of the art: quick look . 7
2.1.2 Terminology . 7

2.2 Information flow . 8
2.3 Design and key elements . 9

2.3.1 Metadata . 9
2.3.2 Products hierarchy . 9
2.3.3 Software components . 10
2.3.4 Code organisation . 10

3 Framework technical description 13
3.1 Metadata database: eXist . 13

3.1.1 eXist configuration . 14
3.1.2 Setting up triggers in eXist . 15

3.2 XML metadata and XML Schema validation 15
3.2.1 Methods metadata . 16
3.2.2 Products metadata . 17
3.2.3 Procedure files . 18

3.3 XML to Java mapping: JAXB . 18
3.4 Metadata combination . 19

iv

Table of Contents v

3.4.1 Implementing a new combination method 20
3.4.2 How to add a combination method to Cometa 21

3.5 Data combination . 21
3.6 Framework development and deployment at MeteoSwiss 21

3.6.1 How to set up Cometa in another environment 23
3.7 Cometa GUI . 23

4 Use case: radar data forecasting by means of satellite derived displacement
vectors 25
4.1 Description and goal . 25
4.2 Products . 26

4.2.1 Satellite images . 26
4.2.2 Radar images . 28

4.3 The AMF combination method . 30
4.4 Forecast evaluation . 32

4.4.1 Quality flag . 32
4.4.2 Visual inspection . 33
4.4.3 Output metadata . 33

4.5 Case studies . 34
4.5.1 Selected events . 34
4.5.2 Methodology . 34

4.6 Results discussion . 35
4.6.1 OMC versus PJC . 35
4.6.2 Forecast tuning . 35
4.6.3 Forecast quality decay over time 37

5 Conclusions 39
5.1 Results . 39
5.2 Outlook . 39

5.2.1 Framework extensions . 39
5.2.2 Use case: improving first results 40

A Common Acronyms 42

B License of the Documentation 44

C CD-ROM and website of the project 45

References 46

Referenced Web Resources 48

Index 50

List of Figures

2.1 Information flow for the Cometa framework. 8
2.2 Framework general structure. 12

3.1 eXist startup dialog. 14
3.2 JAXB architecture. Source: sun.com . 19
3.3 AMFEvent implements a concrete combination method. 20
3.4 Framework deployment at MeteoSwiss. 22
3.5 Cometa graphical user interface. 24

4.1 An example of an MSG microphysics product. 26
4.2 An atmospheric motion field derived by two successive images. 27
4.3 OMC (left) and PJC (right) images for 18th July 2005, 11.45 UTC. . . . 28
4.4 Forecast evaluation: the difference image and its histogram. 32
4.5 Quality assessement over time; 2 products (OMC, PJC) observing 2 events. 36
4.6 Upper image: satellite forecasted images based on satellite retrieved AMF.

Lower image: radar forecasted images based on satellite retrieved AMF. . 37
4.7 Quality assessement against forecast period for one event and one product

(OMC). 38

C.1 Tree view of the content of the CD-ROM 45

vi

sun.com

List of Tables

1.1 Timeline and repartition of tasks. 5

4.1 Rain-rates for radar data. Source: [AAV98]. 29
4.2 Case studies: C stands for convective, S for stratiform. 34

vii

Listings

3.1 collection.xconf file. 15
3.2 Validation of an XML document. 16
3.3 Data combination. 22
4.1 Metadata for satellite images. 27
4.2 Metadata for satellite images, channel IR 10.8 28
4.3 Metadata for radar images, parent product. 29
4.4 Metadata for OMC radar product. 30
4.5 Metadata for PJC radar product. 30
4.6 Metadata for the AMF combination method. 31
4.7 Output metadata, the file result.xml. 34

1

1
Introduction

1.1 Motivation and goal

Weather prediction has attracted the attention of human being throughout the centuries.
Already the Babylonians used to predict the weather through the observation of clouds
movements, shapes and development [13]. Since then, and in particular in the last century,
prediction skills dramatically improved, thanks to scientific findings and technological
instruments. Clouds and their life cycle remain a key element for predicting weather
evolution, particularly in case of rapidly forming, developing and decaying thunderstorms,
which consistently impact on human activities also through precipitation.

Depending on the time and space scale of the atmospheric phenomena, three main
meteorological development streams have historically established: climatology (years,
centuries), weather forecasts (∼3 hours to ∼10 days) and nowcasting and very short
range forecasts (0 to ∼3 hours).

This work focuses on nowcasting applications. Meteorological services have at their
disposal large amounts of data coming from various measurement instruments, like
ground stations, ground radars and satellite based sensors. A special category of
emerging applications are combining these data for inferring as fast as possible relevant
information about ongoing meteorological events [Wil04]. Due to computational
limitations, nowcasting algorithms are balancing between (fast, nearly linear) semi-
empirical and (slow, complex) physically based approaches. Special care and intensive
testing of several concepts are requested to the specialists.

The goal of this work is to design and implement an information system which
organises the different types of data, e.g. radar-derived objects and satellite derived
displacement vectors, for supporting R&D activities in refining existing or implementing
new nowcasting algorithms.

This framework relies on metadata, which describe data types and processing information.
When a new combination method has to be tested, consistency checks among data types
and processing information are firstly performed. The tool will then establish all needed
steps for combining the data, taking into account all the details according to the degree
of complexity.

2

1.2. A starting example 3

1.2 A starting example

Suppose your mission as a nowcasting scientist is to improve the nowcasting skills of
your company. You dispose of a vast spectrum of data like, for example, satellite and
radar images, air temperature, etc. It happens that while you are having a coffee break,
a forecaster tells you about a very new approach he is been using: it seems that a
careful combination of some data allowed him to significantly improve his ability to
predict the displacement of thunderstorm cells. Thrilled by this finding, you now would
like to scientifically validate it. Here is where Cometa comes into play: by writing
a few XML metadata files and a Java class, Cometa allows you to easily perform
a large amount of tests whose results can be statistically analysed. Furthermore, the
parameters perturbation technique – described later in Chapter 2 and 3 – provides a way
for tuning your method configuration, thus optimising its performances for the region of
your interest.

1.3 Work organisation and schedule

This master thesis is the fruit of a collaboration between the DIVA Group of the
Department of Computer Science at the University of Fribourg1 (Switzerland) and the
RASA Team of MeteoSwiss2. The work has been accomplished by Lorenzo Clementi
at the MeteoSwiss centre in Locarno-Monti over a period of 20 weeks from November
2007 until April 2008. Table 1.1 shows a detailed tasks description for each phase of the
project.
The present document reports on the work accomplished during this master thesis and
it serves as a basis for its evaluation. It encloses both a technical description of Cometa
and the documentation concerning the use case we developed to test the framework
functionalities.

1.4 Structure of this document

Concluded the Introduction, Chapter 2 gives an overview of the framework, describing
its architecture and main components. Chapter 3 provides a more detailed description of
Cometa; this chapter contains information about the development, the set up and the
use of the framework. Chapter 4 illustrates the use case prepared to test the framework
with additional insights on meteorological implications. Chapter 5 concludes this work
and proposes an outlook.

1.5 About this document

This documentation is based on a LATEX template created by Patrik Fuhrer and
Dominique Guinard (Software Engineering Group, University of Fribourg, Switzerland).

1http://diuf.unifr.ch/diva, DIVA stands for Document, Image and Voice Analysis
2http://www.meteosvizzera.ch

http://diuf.unifr.ch/diva
http://www.meteosvizzera.ch

1.5. About this document 4

The template is open source and freely available at http://diuf.unifr.ch/softeng/
guidelines.html.

1.5.1 Project name

Originally called MEMcaf, this project has been renamed to Cometa towards the end of
the work (February 2008). You will still find the old acronym in some documents (e.g.
[Cle07, Cle08]).

1.5.2 Notations and Conventions

• Formatting conventions:

– Bold and italic are used for emphasis and to signify the first use of a term.
– SansSerif is used for web addresses.
– Code is used in all Java code and generally for anything that would be typed

literally when programming, including keywords, constants, method names
and variables, class names, and interface names.

• The present report is divided in Chapters. Chapters are broken down into
Sections. Where necessary, sections are further broken down into Subsections, and
Subsections may contain some Paragraphs.

• Figures, Tables and Listings are numbered inside a chapter. For example, a reference
to Figure j of Chapter i will be noted Figure i.j.

• Source code is displayed as follows:
1 Mat r i x3 f rotMat = new Mat r i x3 f () ;

ro tMat . fromAngleNormalAxis (FastMath .DEG_TO_RAD ∗ 45.0 f , new Vector3 f (1.0 f , 0.0 f , 0.0 f)) ;
3 box . se tLoca lRo ta t ion (rotMat) ;

Several acronyms are used throughout the text, their definitions can be found in
Appendix A.

http://diuf.unifr.ch/softeng/guidelines.html
http://diuf.unifr.ch/softeng/guidelines.html
Sans Serif

1.5. About this document 5

Date Description

5th Nov. 2007 Beginning of work

5th Nov. 2007 - 14th
Dec. 2007

First phase

Literature study and familiarisation with the thesis subject
Framework architecture specification
Prototype development
First presentation at MeteoSwiss
First mid-term report editing

14th Dec. 2007 First deadline
First mid-term presentation at the DIVA Group, in Fribourg
Delivery of the first mid-term report (see [Cle07])

14th Dec. 2007 - 8th
Feb. 2008

Second phase

Implementation of a real, end-to-end use case.
Result analysis and second presentation at MeteoSwiss
Second mid-term report editing (see [Cle08])

21st Dec. 2007 - 6th
Jan. 2008

Winter vacations

8th Feb. 2008 Second deadline
Second presentation at MeteoSwiss
Delivery of the second mid-term report

8th Feb. 2008 - 4th
Apr. 2008

Third phase

Framework consolidation
Thesis editing

4th Apr. 2008 Final deadline
Source code and thesis report delivery

17th Apr. 2008 Thesis presentation
Second presentation, in Fribourg

Table 1.1: Timeline and repartition of tasks.

2
Framework overview

2.1 Nowcasting, meteorological background 6

2.1.1 State of the art: quick look . 7

2.1.2 Terminology . 7

2.2 Information flow . 8

2.3 Design and key elements . 9

2.3.1 Metadata . 9

2.3.2 Products hierarchy . 9

2.3.3 Software components . 10

2.3.4 Code organisation . 10

2.1 Nowcasting, meteorological background

The study of an environmental object like the atmosphere requires the use of a wide
spectrum of observation types and processing techniques. Beneath well-known acquisition
instruments like weather stations and radio-soundings, remote-sensing techniques have
been establishing an important and well defined role in weather applications. It accounts
of many active and passive instruments like weather radars, lidars and weather satellites
(e.g. Meteosat, MetOp, NOAA).

The whole gathered observation flux is then used by the weather services (singularly
or through international organisations, like the European ECMWF) for very different
applications, which account for numerical weather models for simulating the atmosphere
over several days, climate applications for studying radiative balances over years, and
very-short range weather predictions for monitoring and following of specific weather
events (nowcasting).

In all these fields, at a certain point of the long chain linking data acquisition to end users,
it is necessary to apply a multi-source approach either for extracting new parameters or
for simply presenting the results to the final users (e.g. the forecaster) [TK04]. The
applied researches work on back-stage for implementing new application or adapting old

6

2.1. Nowcasting, meteorological background 7

techniques to new data. In some cases, they developed refined instruments that, however,
apply only to very peculiar inter-comparisons, like calibration between radar and rain-
gauges or inter-satellite sensors. These applications are based on a bottom-up approach,
since they are built to quickly respond to a concrete question. In other cases, overall
relational databases for initialising big climate or weather models have been developed
(for example at the ECMWF); their final result, however, represents a nearly completely
independent dataset projected into another space and time scale.

This work aims to furnish to MeteoSwiss Locarno-Monti a simple but flexible framework
for characterising and preparing the data, mainly coming from different remote-sensing
sensors, in a best suitable way for subsequently apply comparison methods (physically
or statistically based). The final goal of this instrument is to optimise the research and
development (R&D) effort for inter-comparing several methods and several data, taking
under control data-quality and the complexity of the problem [GG07].

2.1.1 State of the art: quick look

This Subsection reports on how Cometa relates to existing applications.
The use of metadata to characterise meteorological information is attracting more and
more attention (see Subsection 2.3.1). The growth of geographical web-services requiring
standard information in form of XML files has boosted the need for metadata. As well,
numerical weather prediction models (e.g. the European centre ECMWF) are heavy
and complex mathematical systems interfacing with a huge amount of different physical
observations. Due to the nowcasting context, which this works deals with, only main
concepts are taken as inspiration.
Some projects deal specifically with nowcasting. For example, the Nowcasting
Working Group (NWG) of the WWRP aim to coordinate national efforts to “achieve
implementation of end-to-end nowcasting systems, techniques and procedures” [AAV03].
Similarly, the SAF/NWC Consortium, aims “to produce the Software to deal with the
Nowcasting and VSRF using the characteristics of the MSG SEVIRI data” using a
combination of satellite data and numerical weather prediction models [12]. Again, the
features required to our framework are somehow different. First, the problem is tackled at
a different scale. We do not want to produce an end-to-end nowcasting system but, rather,
a specific tool for testing some peculiar combination of existing algorithms. Second, the
framework is not required to work in real time, but it will be used offline as a support to
R&D specialists for testing and validating new techniques based on historical observations
and using an experimental approach. Third, since the data treated by Cometa can be
very heterogeneous (e.g. remote sensing images and rain gauge measurements), it is very
difficult to define a specific standard for metadata, like the ones mentioned above. For
these reasons, although Cometa bases on existing technologies, the resulting framework
does not look like other existing applications.

2.1.2 Terminology

For major clarification, we defined some specific terms used all along this document and
in the framework implementation.
Product refers to a physical quantity, e.g. rain rate or brightness temperature.

2.2. Information flow 8

Figure 2.1: Information flow for the Cometa framework.

Observation is a measure of a product valid for a certain time or timespan.

Data is a numerical representation of an observation.

Combination method or method is a sequence of actions applied onto metadata to
verify their coherence (e.g. synchronisation).

Product metadata describe the parameters of a product.

Method metadata describe the parameters of a method.

Combination procedure is the result of the metadata combination. This file contains
all the information needed to execute the algorithm.

2.2 Information flow

Figure 2.1 shows the information flow for the Cometa framework.
1. Basic configuration: the method’s default configuration is given by the existing

metadata.

2.3. Design and key elements 9

2. Additional configurations: further information are either inserted by the user
at runtime or collected through other metadata files. Conceptually, in this step a
product is transformed into an observation by locating it on the timeline.

3. The framework collects and combines the metadata and generates an
intermediate procedure file. This file can be reviewed by the user and it also
serves as system log.

4. On user demand, the combination procedure file is launched and, according
to the information contained in it, a sequence of UNIX commands is executed in
order to perform the required actions on the data. This step may depend on third
party software that has to be installed on the machine where Cometa is running
(see 3.6).

The data combination can be automatically executed several times with a varying value
for a given parameter, without requiring additional configuration (see 3.2.1). This process
is called parameter perturbation and is explained in detail later on.

2.3 Design and key elements

As flexibility is a fundamental requirement for our framework, we designed a reusable
architecture so that several combination methods can be implemented. All these methods
exploit the functionalities furnished by the Cometa framework.

2.3.1 Metadata

Metadata is “information about data” or, in other words, it provides the information
needed to correctly interpret some specific data. We use metadata to describe both the
features of the products and the parameters of the combination methods.

With the exponential growth in density and coverage of observations, the handling of
meteorological metadata became crucial. At national and international scale, great efforts
performed in recent years to produce standard representations of geografical metadata (e.g.
in the USA, [8] [NIS04], or through the WMO [WMO05]). Most of these projects rely
on the XML markup language to structure metadata: it offers a well defined syntax
that can be automatically treated by a computer and, at the same time, can be easily
understood by a human. Furthermore, XML documents are validated thanks to XML
Schema, so that the validity of their structure can be formally verified.

Huge metadata standards are far too big for the purposes of our application [8]. The
approach, however, has proven valuable even at a smaller scale [AS00] and, for this
reason, we adopted XML and XML Schema to describe the metadata of our framework.

2.3.2 Products hierarchy

Our products metadata shall be hierarchically organised in order to reduce information
redundancy. Think for example of two different satellite sensors that take images of the
same size, but that observe different wavelengths. In this case, the information about the

2.3. Design and key elements 10

image resolution is the same for the images issued from the two sensors; the content of
the images, however, differs consistently. Metadata shall allow a hierarchical organisation
so that it is possible to create a class of satellite images that share the same resolution
but that differ for other features. XML ability to establish links between documents
is exploited to create parent - child relations between different metadata files, therefore
generating a hierarchy of products.

In the case of radar and satellite images metadata, this hierarchy mainly reflects the
processing of an observation (scanning strategy, frequency, calibration and so on). For
example, in case of satellite images, several base data can be combined together to
generate a new derived product that inherits the features of his parents.

2.3.3 Software components

The choice of XML has a number of consequences. It showed natural to store metadata
files in a native XML database and – among several options [11] – eXist XML database
has been chosen due to its opensource nature and the availability of a good Java API [3].
Java has accordingly been selected as development language, in particular because it
offers two useful libraries:

1. JAXB, which provides an elegant and efficient way to map XML files to Java objects
and vice versa [9].

2. The XMLDB API that is a collection of classes allowing to easily interact with the
eXist XML database where the metadata are stored [15].

An additional argument in favour of using Java and XML is that they provide a
multiplatform environment. As shown by Figure 3.4, the framework components can
run on several machines equipped with different operating systems.

Unlike what has been done for metadata, no particular storage method has been defined
for data itself. As a matter of fact, in most cases data is already organised in specific
databases where it is stored and archived. At the RASA Team, for example, the
main source of data are radar and satellite images, which are already organised in
specific filesystems that also provide the utilities needed to retrieve current and historical
observations.

Cometa provides further on a graphical user interface to ease its use (see 3.7).

2.3.4 Code organisation

The source code of Cometa is structured into 10 packages that we will now briefly
describe. For a more detailed documentation please refer to Chapter 3 or see the Javadoc
in Appendix C.

cometa contains the main class of the project.

cometa.combine contains the classes that handle the metadata combination phase.

cometa.execute controls the data combination phase.

2.3. Design and key elements 11

cometa.exist governs the communication with the metadata database.

cometa.exist.triggers groups the classes implementing database triggers.

cometa.gui contains the implementation of the framework’s GUI.

cometa.translator handles the translation between Java objects and XML documents. This
package relies on the JAXB technology.

cometa.translator.method, cometa.translator.procedure, cometa.translator.product are the
three packages that contain the code generated by JAXB.

Figure 2.2 (ii) provides a graphical representation of the packages described above.
The framework’s logic is implemented in the packages cometa.exist, cometa.combine and
cometa.execute, whereas the other packages perform some support tasks (e.g. management
of GUI elements or translation of XML files to Java objects). The UML use case diagram
of Figure 2.2 (i) highlights the points where the user interaction is required

2.3. Design and key elements 12

Figure 2.2: Framework general structure.

3
Framework technical description

3.1 Metadata database: eXist . 13

3.1.1 eXist configuration . 14

3.1.2 Setting up triggers in eXist . 15

3.2 XML metadata and XML Schema validation 15

3.2.1 Methods metadata . 16

3.2.2 Products metadata . 17

3.2.3 Procedure files . 18

3.3 XML to Java mapping: JAXB 18

3.4 Metadata combination . 19

3.4.1 Implementing a new combination method 20

3.4.2 How to add a combination method to Cometa 21

3.5 Data combination . 21

3.6 Framework development and deployment at MeteoSwiss . . . 21

3.6.1 How to set up Cometa in another environment 23

3.7 Cometa GUI . 23

3.1 Metadata database: eXist

eXist is a platform independent, native XML database written in Java. eXist comes in
different versions (see [3]), the selected one is the jar standalone version 1.2, which runs
on any machine offering a JVM v. ≥ 1.4.

The database installation is easy and can be done in a few steps thanks to a graphical
interface. In addition to the database server, which has to be started from the command
line, eXist offers a graphical user interface to administrate the database.

13

3.1. Metadata database: eXist 14

Figure 3.1: eXist startup dialog.

3.1.1 eXist configuration

After the installation, the following operations allow to start and configure the database:
1 $ cd eX is t / b in

$. / s t a r t u p

This starts the database server. The administration interface is then launched:
$ cd . .

2 $ java − j a r s t a r t . j a r

A window like the one of Figure 3.1 should appear. This dialog allows the administrator
to configure the database and to save the information for further logins. Fill in the form
with the following information:

Username, password: the ones chosen during the installation procedure.

Type: Remote

URL: xmldb:exist://[hostname]:[port]/exist/xmlrpc, where [hostname] stands for the name of the
machine where eXist is running and [port] for the port it uses (usually 8080).

Save the session and log into the database. A new window appears: this is the main
interface where collections and documents can be managed. The use of this interface
is very intuitive and, therefore, we will not discuss it here. For additional information,
please refer to the official documentation [3].

Cometa requires three collections to be set up at the root of the database:
methods contains the methods metadata.

products contains the products metadata.

validators contains the XML Schema used to validate methods and products metadata,
as well as procedure files.

3.2. XML metadata and XML Schema validation 15

< c o l l e c t i o n xmlns=" h t t p : / / ex i s t−db . org / c o l l e c t i o n−con f i g / 1 . 0 ">
2 < t r i g g e r s >

< t r i g g e r event= " store , update " c lass=" cometa . e x i s t . t r i g g e r s . TriggerName " / >
4 < / t r i g g e r s >

<7 c o l l e c t i o n >

Listing 3.1: collection.xconf file.

3.1.2 Setting up triggers in eXist

In a database, triggers are actions executed in response to specific events. In eXist, there
are four different kinds of events that can trigger an action:
remove: when a document is removed.

rename: when a document is renamed.

store: when a new document is stored in a collection.

update: when a document is modified.
As we have seen in 2.3.2, products hierarchical structure is modeled by links between
metadata files: triggers are therefore used to ensure referential integrity between the
documents. To set up a trigger, follow these steps:

1. Create a file called collection.xconf that looks like the one of Listing 3.1. The attribute
event indicates the events that trigger a call to the class defined by the value of the
class attribute.

2. The collection /db/system/config/db mirrors the database structure (i.e. the structure
of /db). For the trigger to be active in a given collection, collection.xconf has to be
placed into the corresponding collection under /db/system/config/db (typically, triggers
are placed in /db/system/config/db/products).

3. Restart eXist.

For a Java class to be a valid trigger, it must implement the DocumentTrigger1 interface
and it must be accessible from the eXist classpath. A good folder to place the compiled
version of the trigger is eXist/lib/user.
ProductReferentialIntegrity2 is a default trigger provided by the framework. It verifies the
referential integrity every time that a new product is stored into the products collection
or when an existing product is modified. This is done by checking if the products
corresponding to the mentioned IDs actually exist in the database. For more information
about this trigger, refer to the Cometa Javadoc or see the source code in Appendix C.

3.2 XML metadata and XML Schema validation

Cometa deals with three classes of XML files: method metadata, product metadata and
procedure files. Each of these classes has a specific structure, which is enforced by three
different XML Schema [18]. Method and product metadata are stored in the methods
and products database collections, whereas XML Schema files are stored in the validators

1org.exist.collections.triggers.DocumentTrigger
2cometa.exist.triggers.ProductReferentialIntegrity

3.2. XML metadata and XML Schema validation 16

1 private s t a t i c boolean i s V a l i d (F i l e schema , XMLResource xmlDocument) {
SAXParser parser = new SAXParser () ;

3 t ry {
parser . setFeature (" h t t p : / / xml . org / sax / fea tu res / v a l i d a t i o n " , true) ;

5 parser . setFeature (" h t t p : / / apache . org / xml / f ea tu res / v a l i d a t i o n / schema" , true) ;
parser . setFeature (" h t t p : / / apache . org / xml / f ea tu res / v a l i d a t i o n / schema−f u l l −checking " ,

7 true) ;
parser .

9 se tProper ty (" h t t p : / / apache . org / xml / p r o p e r t i e s / schema / ex te rna l−noNamespaceSchemaLocation " ,
schema . getPath ()) ;

11

V a l i d a t o r handler = new V a l i d a t o r () ;
13

parser . se tEr ro rHand le r (handler) ;
15 parser . parse (new InputSource (T rans la to r . get InputStream (xmlDocument))) ;

i f (handler . v a l i d a t i o n E r r o r == true) {
17 System . out . p r i n t l n ("XML Document has Er ro r : "+handler . saxParseException . getMessage ()) ;

return fa lse ;
19 } else {

return true ;
21 }

23 } catch (java . i o . IOExcept ion ioe) {
System . out . p r i n t l n (" IOExcept ion " + ioe . getMessage ()) ;

25 } catch (SAXException e) {
System . out . p r i n t l n (" SAXException " + e . getMessage ()) ;

27 } catch (JDOMException jde) {
jde . p r in tS tackTrace () ;

29 }
return fa lse ;

31 }

Listing 3.2: Validation of an XML document.

collection. Procedure files, on the other hand, are not stored in the database but are
just written as output on a given location in the filesystem, at the end of the metadata
combination phase.

Method and products metadata are validated against their XML Schema before every
metadata combination in order to avoid run time errors due to malformed metadata.
Validation is done thanks to the open source modules offered by Xerces-J [14], which
provide a Java toolkit to validate XML documents against a given XML Schema.
Listing 3.2 shows the isValid method of the class ValidateXML3 that performs the validation
of an XML document.
As we shall see later in Section 3.3, the schema are also requested by JAXB in order to
generate the source code for the corresponding Java objects. Next Subsection provides a
closer look at each one of these three XML file classes4.

3.2.1 Methods metadata

A combination method is characterised by two main elements, a set of observations and
a set of parameters, that specify the configuration with which the method is executed.

3cometa.translator.ValidateXML
4For some concrete example of XML and XML Schema files, refer to the source code in Appendix C.

3.2. XML metadata and XML Schema validation 17

A method metadata file has a root element named method, whose attribute methodID must
be unique within the collection and it constitutes the method identifier used by Cometa.
The root element contains two child elements:
parameters is a sequence of at least one observation element that describes the

observation(s) required by this combination method. Every observation is specified
by a name, a type and possibly a default value.
Both the parameters element and its children of type observation can contain some
simpleParam or compoundParam. A simple parameter is made of a (name, value) pair
describing a particular feature of an observation or of the method itself. The values
for simple parameters are set by the user at the runtime. Parameters of type integer
can contain a perturbate attribute, which is described below.
The value of a compoundParam element, on the other hand, is not directly defined
by the user, but it depends on some simple parameters and it is computed by a
specific procedure, called action. More precisely, a compoundParam contains three
attributes: a name, an action and a list of arguments. The latter is a list of comma
separated names of previously defined simpleParams; when the compoundParam needs
to be read, its value is computed on the fly by passing to the method defined by
action the current value of the simple parameters listed by the arguments attribute.
It is important to remark that the content of action must correspond to a method
implemented in CompoundParamActions5; more details on how this class has to be
updated can be found in the Javadoc (Appendix C).

combinationProcedure is a simple element that contains the reference to a Java class
implementing the metadata combination method. This reference is given by the
attribute class of the element ref and it must correspond to the name of a Java class
located in the package cometa.combine. It is compulsory that any class appearing here
implements the cometa.combine.Combiner interface (for a more detailed description,
see 3.4.1).

As mentioned above, every simpleParam element may contain a perturbate attribute which
can be set to true or false. If this attribute is present and its value is set to true, then
the corresponding parameter is perturbed, i.e. its value will vary within a given range
of values specified by the user at the runtime. The result of the perturbation is a set
of experiments that can be used to asses the impact of a given parameter in a certain
combination method.

3.2.2 Products metadata

Products carry some important information: the features of the physical quantity (or
quantities) they measure and – for elaborated products – their processing chain. Metadata
must hence express this information in a structured format.

A product metadata starts with a product root element containing a productID attribute
that must be unique for all the products in the collection. The root element contains
three child elements:

dataFeatures is a list of dataParam elements, that is to say elements describing pairs
of (name, value) properties for the current product. Additionally, the dataFeatures

5cometa.combine.CompoundParamActions

3.3. XML to Java mapping: JAXB 18

element can have a base attribute whose value is the identifier of another product
from which the current product will inherit the data features.

lineage The name of this element is inspired by [AS00] and its goal is to model the
sequence of actions needed to generate the current product. lineage contains a list
of products identifier and one method identifier; the meaning of this information is
“the current product is generated by method x and it depends on products y and
z ”. During the metadata combination phase, the framework recursively verifies this
hierarchy, until the base products (i.e. the products whose metadata contain no
lineage element) are found.

additionalInformation contains some additional information that is ignored by Cometa
(this can be considered metadata of metadata).

It is important to point out the difference between the base attribute of dataFeatures and
the lineage element. The latter is used to model the chain of operations that generate the
current product (i.e. the product described by the metadata). For this reason, lineage
can contain several parent products, because a complex product can be produced by a
single method that needs several products as input.
The use of the base attribute, on the other hand, merely indicates that the current product
inherits the featrues of another product. Moreover, base can contain a single value, which
means that a child product has at most a parent, contrary to what happens with lineage.

3.2.3 Procedure files

Procedure files contain the UNIX commands that are executed in the data combination
phase, together with some additional information (which is optional). The structure
of an XML procedure file is therefore very simple: the root element is named
combinationProcedure and it contains a list of info and execute elements, which are both
simple types containing only a text string. When a procedure is run, the content of the
execute elements is executed, whereas the info elements are ignored.

3.3 XML to Java mapping: JAXB

JAXB is an API that allows a comfortable interaction between Java programs and XML
documents [OM03]. With respect to the very common DOM and SAX, JAXB tackles the
problem at a higher level, without having to “manually” parse XML documents. In fact,
JAXB uses the XML Schema [17] defining the structure of a set of XML files to generate
one (or more) Java class(es) that models the schema.

Figure 3.2 shows the architecture of the JAXB API. Given an XML Schema, the binding
complier that comes with the default distribution of JAXB generates the Java classes
mapping XML files to Java objects. Marshalling is the action of converting Java objects
to an XML file and unmarshalling consist in creating Java objects from an XML file;
both these operations are handled by JAXB.

The following listing illustrates the unmarshalling of an XML metadata file:

3.4. Metadata combination 19

Figure 3.2: JAXB architecture. Source: sun.com

1 JAXBContext jaxbContext = JAXBContext . newInstance (" cometa . t r a n s l a t o r . method ") ;
Unmarshal ler u = jaxbContext . createUnmarshal ler () ;

3 method = (Method) u . unmarshal (T rans la to r . get InputStream (xmlMethod)) ;

The next lines execute the marshalling of an XML procedure file:
1 JAXBContext jaxbContext = JAXBContext . newInstance (" cometa . t r a n s l a t o r . procedure ") ;

Marsha l le r marsha l le r = jaxbContext . c rea teMarsha l le r () ;
3 marsha l le r . se tProper ty (Marsha l le r .JAXB_FORMATTED_OUTPUT, new Boolean (true)) ;

S t r i n g f i lename = method . getParamValue (" o u t p u t F i l e ") ;
5 marsha l le r . marshal (combinationProcedure , new Fi leOutputStream (f i lename)) ;

As shown by the previous code snippets, the marshalling and unmarshalling operations
offer an elegant way to map Java objects to XML files.
To generate the Java classes corresponding to a certain XML Schema, execute the
following command:

1 $ x j c . sh −p package schema . xsd

where xjc.sh is the binding complier that comes with JAXB and package is the name of
the package to which the generated code will belong (e.g. cometa.translator.method).

3.4 Metadata combination

The metadata combination is implemented by the CombinationEngine6 class. In this phase,
the Java objects representing a combination method contain the parameter values selected
by the user at the runtime.

The operations executed by CombinationEngine are:
1. Products hierarchy verification: the processing chain for each product is generated;

this information is then written to the procedure file in form of info tags (see 3.2.3).

6cometa.combine.CombinationEngine

sun.com

3.4. Metadata combination 20

Figure 3.3: AMFEvent implements a concrete combination method.

2. Metadata combination: the combination method referenced by the method
metadata is instantiated and executed. This step produces the exec information
contained in the procedure file (see 3.2.3).

3. Finally, the procedure file is written to the disk.
The metadata combination is executed in a new thread that terminates when the
combination is over. This optimisation avoids the application freezing while the
combination is being executed.

3.4.1 Implementing a new combination method

For a Java class to be a valid combination method, and thus to appear in a ref element
of a method metadata (see 3.2.1), it must extend the cometa.combine.Combiner abstract
class, as shown by Figure 3.3. This class defines (among others) the following, important
elements:

1. The workingDirecotry field represents the path of the directory where the procedure
file is written at the end of the metadata combination. Furthermore, this folder is
used to write some temporary files generated by Cometa at the runtime.

2. combineMetadata is an abstract method that must be implemented by all the
subclasses. It defines the concrete steps that must be carried out by this combination
method. Typically, this method adds to the procedure file a sequence of actions
such as retrieving data from an archive and processing it.
Note: the mentioned actions are not directly executed by this method but they
are written to the procedure file which will be executed later (on user demand).

3. The postProcessing method is executed at the end of the data combination phase.
Its use is optional: if no post processing needs to be done, the implementation of
this method can be a dummy, empty method.

The post processing method enables a clean division between the metadata combination
phase and the data combination phase. postProcessing is invoked when the data
combination phase is over, allowing therefore to execute additional operations like, for

3.5. Data combination 21

example, the evaluation of the result.

For some concrete examples of combination method implementations, please refer to
Chapter 4 that presents an end-to-end use case for our framework.

3.4.2 How to add a combination method to Cometa

This section aims to provide a short description of the steps required to add a combination
method to our framework.

1. First, define the combination method metadata by adding a new XML file to the
method collection in the metadata database. For more information about this
procedure, have a look at 3.1 and 3.2.1.

2. Next, create a new combiner class, as described in 3.4.1. For example, your new
class could be implemented in the file MyNewCombiner.java.

3. Compile the newly created class:
1 $ javac −cp / path / to / cometa . j a r MyNewCombiner . java

where /path/to/cometa.jar is the path to the Cometa jar archive.

4. Finally, add the .class file to Cometa:
1 $ cometa . sh add MyNewCombiner . c lass

cometa.sh is a UNIX shell script described later in 3.6.

After restarting the application, the new combination method should appear in the drop
down menu of the main dialog (see 3.7 for more details).

3.5 Data combination

The data combination process is straightforward. In fact, given as input a procedure file,
the framework simply go through the exec tags and executes the corresponding UNIX
commands, as shown by Listing 3.3. Note that the code simulates the output redirect
mechanism used by the UNIX shell.

As for the metadata combination, also the data combination is executed in a dedicated
thread so that the application can be used even when the combination is running.
According to the number of operations and the size of data to be treated, this phase
can require a considerable amount of time.

3.6 Framework development and deployment at
MeteoSwiss

The framework described in this document has been developed at MeteoSwiss using the
following hardware and software configuration:

• Sun ultra 25, 1.34 GHz processor, 1-MB level 2 cache [7]

3.6. Framework development and deployment at MeteoSwiss 22

1 I t e r a t o r <St r ing > e x e c I t e r a t o r = procedureF i le . getExecute () . i t e r a t o r () ;

3 / / execute a l l the " exec " tags
while (e x e c I t e r a t o r . hasNext ()) {

5 S t r i n g command = c o n v e r t E n t i t i e s (e x e c I t e r a t o r . next ()) ;
S t r i n g outputOfcommand = " " ;

7 i f (command . conta ins ("> ") && ! command . conta ins (">>")) {
S t r ingToken ize r tok = new St r ingToken ize r (command, "> ") ;

9 command = tok . nextToken () ;
S t r i n g f i lename = tok . nextToken () . r e p l a c e A l l (" " , " ") ;

11 outputOfcommand = executeCommand (command) ;
w r i t e T o F i l e (f i lename , outputOfcommand) ;

13 } else i f (command . conta ins (">>")) {
S t r ingToken ize r tok = new St r ingToken ize r (command, ">>") ;

15 command = tok . nextToken () ;
S t r i n g f i lename = tok . nextToken () . r e p l a c e A l l (" " , " ") ;

17 outputOfcommand = executeCommand (command) ;
appendToFile (f i lename , outputOfcommand) ;

19 } else {
outputOfcommand = executeCommand (command) ;

21 }

Listing 3.3: Data combination.

Figure 3.4: Framework deployment at MeteoSwiss.

• Solaris 10 operating system [6]

• Netbeans IDE v. 5.5.1 [5]
Figure 3.4 illustrates the deployment of the framework at MeteoSwiss. Netbeans is
installed on the development machine lomws111. Since the combination method we used
to test the framework requires some existing software (CineSat, [Sch06]), the framework’s
jar archive is copied to cinews01 where this software is installed. The metadata database,
on the other hand, runs on lomws111 and Cometa communicates with it through the
XML-RPC7 implementation furnished by eXist [3, 16].

In addition to Java programming, the development has required the writing of various
UNIX shell scripts in order to speed up some repetitive tasks, such as moving the
framework jar archive from lomws111 to cinews01. These scripts, together with their
documentation, can be found in Appendix C.

7XML-RPC is a “remote procedure calling using HTTP as the transport and XML as the encoding”[16].

3.7. Cometa GUI 23

3.6.1 How to set up Cometa in another environment

In order to set up Cometa in a new environment, execute the following operations:

1. Install and configure the eXist metadata database as described in Section 3.1.

2. Copy the Cometa Netbeans project to its new location and open it with Netbeans.
Edit the values of the constants in MedataDB8 so that they fit the new constraints
and recompile. More information about those values are provided by the Javadoc
and by the comments in the code.

3. Add a new combination method, as described in Subsection 3.4.2.

4. Launch the framwork’s GUI (see Seciton 3.7) and test the combination method.

3.7 Cometa GUI

Section 3.4.1 illustrated the necessary steps to implement a new combination method.
This operation requires some programming knowledge since a new Java class has to be
implemented. The use of the framework, on the other hand, should not require Java skills
and the goal of the graphical user interface is just to ease the use of Cometa.

To start the application, execute the following command:
1 $ java − j a r cometa . j a r

Figure 3.5 illustrates the dialogs composing the GUI, that we now briefly describe.

(i) This dialog is shown when Cometa is started. It contains two tabs, the first one
allowing to select form a drop down menu the required combination method (the
list of available methods is retrieved at startup from the metadata database).
In this dialog it is also possible to open a previously saved experiment by selecting
Open from the Session menu.

(ii) The second tab of the main dialog allows to select a procedure file to be executed.
It is possible to either preview the file and then run it, as shown in (v), or run it
right away.

(iii) This form gathers the parameter values for the current experiment. Note that some
parameters have a small icon on the right side: these are the parameters that can
be perturbed (see 3.2.1). Furthermore, the user can save the current experiment or
open an old one by using the Session menu.

(iv) The parameter perturbation dialog. As mentioned in Section 3.2.1, for a parameter
to be perturbed, the user must indicate the lower bound, the upper bound and the
step width. This will result in a set of experiments.

(v) The procedure review dialog allows to see and modify a procedure file before
executing the data combination.

8cometa.exist.MetadataDB

3.7. Cometa GUI 24

Figure 3.5: Cometa graphical user interface.

4
Use case: radar data forecasting by

means of satellite derived
displacement vectors

4.1 Description and goal . 25

4.2 Products . 26

4.2.1 Satellite images . 26

4.2.2 Radar images . 28

4.3 The AMF combination method 30

4.4 Forecast evaluation . 32

4.4.1 Quality flag . 32

4.4.2 Visual inspection . 33

4.4.3 Output metadata . 33

4.5 Case studies . 34

4.5.1 Selected events . 34

4.5.2 Methodology . 34

4.6 Results discussion . 35

4.6.1 OMC versus PJC . 35

4.6.2 Forecast tuning . 35

4.6.3 Forecast quality decay over time 37

4.1 Description and goal

Weather forecasts predict the weather evolution for a few days and are based on
complex weather prediction models that simulate the physical processes occurring in
the atmosphere. Due to their complexity, these models require up to several hours to be
computed and, therefore, they cannot be used for short range forecasts. For this reason,
nowcasting activities are based on methods that require less time to be computed, that

25

4.2. Products 26

Figure 4.1: An example of an MSG microphysics product.

is to say, methods involving a smaller amount of data.

In estimating the displacement of a severe weather event (e.g. a thunderstorm
accompanied by hail precipitations), a technique that is often used is the time
extrapolation of radar images. A radar image can be interpreted as the intensity
estimation of an ongoing precipitation: the extrapolation is obtained by observing how
the rain field has moved in the past and by projecting this movement into the future,
producing a forecasted image. This approach has proven valuable especially for flat
regions and, as shown by [LZT04, Zaw05], for certain events it can yield better results
that the numerical models for up to 6 hours. In mountainous regions, however, the
orography plays a major role in the whole life cycle of thunderstorms.

In our use case an instantaneous radar retrieved rain field is forecasted by using satellite
derived displacement vectors. The result is evaluated by comparing it against actually
measured data at the following time step. We aim to answer the following questions:

1. Does the forecast quality change using different radar products?

2. Is it possible to tune this method to optimise the result for our region (Alps)?

3. How does the forecast quality decrease over time?

4.2 Products

This section describes the features of these data and the way we modeled it by means of
metadata.

4.2.1 Satellite images

Satellite images come from geostationary satellites Meteosat-8 and Meteosat-9, both of
them belonging to Meteosat Second Generation (MSG) [2]. The observations are carried
by the imager SEVIRI which passively analyses 12 different wavelengths (channels), as

4.2. Products 27

Figure 4.2: An atmospheric motion field derived by two successive images.

described in detail by [AAV04]. Figure 4.1 shows an example of an MSG product in which
RGB colours are used by the forecasters to highlight the microphysics of clouds. In our
application the black body temperature derived by the infrared channel centred at 10.8
µm (IR 10.8) is exploited to derivate an Atmospheric Motion Field (AMF), which is a
vector field describing the displacement of clouds between two successive images through
pattern matching or image correlation1. Figure 4.2 shows an example of an AMF (yellow
vectors) overlayed on a IR 10.8 channel image.
IR 10.8 is located in the so called “infrared window” (most transparent to water vapour)
and it is often used to estimate the cloud top temperature [KKE05]. Image calibration
consists in linking pixels intensities to a physical parameter, in this case temperature: the
colder the pixel, the higher the cloud. This is an important relationship, in particular
for thunderstorms, which consist of very high and thick clouds whose top can reach the
tropopause. The height assignment to satellite retrieved atmospheric motion vectors is
a topic which is currently being heavily investigated by several studies, as reported by
[AAV07].

Listing 4.1 and Listing 4.2 show the XML files we created to model the products described
above. Listing 4.1 constitutes a data type from which all satellite images should inherit,
whereas Listing 4.2 specifies the features of IR 10.8 images. The use of the attribute base
(described in 3.2.2) indicates that IR 10.8 images inherit the features of satellite images.

1 <product product ID=" S a t e l l i t e ">
<dataFeatures>

3 <dataParam name=" del taTime " value=" 10 " / >
<dataParam name=" arch ive " value=" / d isk3 / a rch ive / cases " / >

5 < / dataFeatures>
< a d d i t i o n a l I n f o r m a t i o n >

7 <addInfoParam name=" createdBy " value=" c l l " / >
<addInfoParam name=" createdOn " value=" 20080116 " / >

9 < / a d d i t i o n a l I n f o r m a t i o n >
< / product>

Listing 4.1: Metadata for satellite images.

1A new image is issued every 15 minutes

4.2. Products 28

Figure 4.3: OMC (left) and PJC (right) images for 18th July 2005, 11.45 UTC.

<product product ID="MET∗_IR108_IMG ">
2 <dataFeatures base=" S a t e l l i t e ">

<dataParam name=" channel " value=" IR108 " / >
4 <dataParam name=" frequency " value=" 15 " / >

<dataParam name=" db " value=" c inesa t d b l i s t \ "MET∗_IR108_IMG_ ∗ \ " " / >
6 < / dataFeatures>

< a d d i t i o n a l I n f o r m a t i o n >
8 <addInfoParam name=" createdBy " value=" c l l " / >

<addInfoParam name=" createdOn " value=" 20071205 " / >
10 < / a d d i t i o n a l I n f o r m a t i o n >

< / product>

Listing 4.2: Metadata for satellite images, channel IR 10.8 .

4.2.2 Radar images

Several meteorological radar applications aim to produce the best estimate of precipitation
rate at the ground level. This information is often exploited in the field of very short
range rain forecasts. MeteoSwiss owns and manages three radars: La Dôle (near Geneva
and close to the french border) Albis (near Zürich) and Monte Lema (in the southern
Switzerland, Ticino). Each radar needs little less than 5 minutes to perform a complete
scan and new radar products are generated with a frequency of 5 minutes [AAV98]. As
part of our project we used two different radar products:
Overview Max Composite (OMC) is a class of images produced by applying a

projection of the maximum reflectivity in vertical direction [AAV98]. The composite
image integrates the data coming from La Dôle, Albis and Monte Lema.

Rain Composite (PJC) products provide the best estimation of the precipitation at
ground level [AAV98]. With respect to OMC, Rain products undergo several
processing to improve the estimation (e.g. ground clutter elimination). As for
OMC, the composite image integrates the data coming from La Dôle, Albis and
Monte Lema.

Both OMC and PJC products furnish a rain-rate estimation, their unit of measure is
therefore mm/h. This information is coded on 4 bits, which corresponds to 16 possible
values that are used to represent 16 intervals on a logarithmic scale as shown by Table
4.1. An example of an OMC and a PJC image is provided by Figure 4.3, where greenish

4.2. Products 29

Class Rain-rate [mm/h]

00 < 0.16
01 0.16 - 0.25
02 0.25 - 0.40
03 0.40 - 0.63
04 0.63 - 1.00
05 1.00 - 1.60
06 1.60 - 2.50
07 2.50 - 4.00
08 4.00 - 6.30
09 6.30 - 10.0
10 10.0 - 16.0
11 16.0 - 25.0
12 25.0 - 40.0
13 40.0 - 63.0
14 63.0 - 100
15 > 100

Table 4.1: Rain-rates for radar data. Source: [AAV98].

pixels correspond to low rain-rates and yellow / white pixels to very high rain-rates. The
spatial resolution of both PJC and OMC is of 269 × 305 pixels, each of which having an
edge of size 2 km [AAV98].

As for satellite images, also for radar products we defined a “virtual” parent product
specifying some common features, and two child products for OMC and PJC respectively.

1 <product product ID=" Radar2km ">
<dataFeatures>

3 <dataParam name=" radars " value="ADL" / >
<dataParam name=" p r o j e c t i o n " value=" swissradar2km " / >

5 <dataParam name=" frequency " value=" 5 " / >
<dataParam name=" arch ive " value=" / d isk3 / a rch ive / cases " / >

7 < / dataFeatures>
< a d d i t i o n a l I n f o r m a t i o n >

9 <addInfoParam name=" createdBy " value=" c l l " / >
<addInfoParam name=" createdOn " value=" 2008/01/08 " / >

11 < / a d d i t i o n a l I n f o r m a t i o n >
< / product>

Listing 4.3: Metadata for radar images, parent product.

Listing 4.3 shows the metadata for the radar parent product, named Radar2km. It specifies
the frequency with which the products are generated (5 minutes) as well as the name of
the projection (swissradar2km). Listing 4.4 and Listing 4.5 represent the metadata of
OMC and PJC products; the base attribute of dataFeatures indicates that the parent
product’s ID is Radar2km. The actual existence of a product named Radar2km is verified
by the database trigger ProductReferentialIntegrity2, described in Subsection 3.1.2.

2cometa.exist.triggers.ProductReferentialIntegrity

4.3. The AMF combination method 30

<product product ID="OMC">
2 <dataFeatures base=" Radar2km ">

<dataParam name=" abb rev ia t i on " value="OMC" / >
4 <dataParam name=" c a l i b r a t i o n " value="METER 0.001 0 " / >

<dataParam name=" db " value=" c inesa t d b l i s t \ "RAD_OMC∗ \ " " / >
6 < / dataFeatures>

< a d d i t i o n a l I n f o r m a t i o n >
8 <addInfoParam name=" createdBy " value=" c l l " / >

<addInfoParam name=" createdOn " value=" 2008/01/08 " / >
10 < / a d d i t i o n a l I n f o r m a t i o n >

< / product>

Listing 4.4: Metadata for OMC radar product.

1 <product product ID="PJC">
<dataFeatures base=" Radar2km ">

3 <dataParam name=" abb rev ia t i on " value="PJC" / >
<dataParam name=" c a l i b r a t i o n " value="METER 0.001 0 " / >

5 <dataParam name=" db " value=" c inesa t d b l i s t \ "RAD_PJC∗ \ " " / >
< / dataFeatures>

7 < a d d i t i o n a l I n f o r m a t i o n >
<addInfoParam name=" createdBy " value=" c l l " / >

9 <addInfoParam name=" createdOn " value=" 2008/01/08 " / >
< / a d d i t i o n a l I n f o r m a t i o n >

11 < / product>

Listing 4.5: Metadata for PJC radar product.

4.3 The AMF combination method

The combination method described in this Chapter is modeled by the metadata of
Listing 4.6. It is composed by two observations and several method parameters.

1. The first observation is of type MET*_IR108_IMG and it denotes the data used to
compute the AMFs. It contains two parameters – from and to – that specify which
event has to be considered (see 2.1.2).

2. The second observation accepts three different products: OMC, PJC or
MET*_IR108_IMG and it designates which kind of data has to be forecasted.

4.3. The AMF combination method 31

1 <method methodID="AMF Event ">
<parameters>

3 <observa t ion type="MET∗_IR108_IMG ">
<simpleParam name=" from " type=" s t r i n g " defaul t="YYMMDDHHMM" / >

5 <simpleParam name=" to " type=" s t r i n g " defaul t="YYMMDDHHMM" / >
< / observa t ion>

7 <observa t ion type="OMC, PJC,MET∗_IR108_IMG " / >
<simpleParam name=" o u t p u t F i l e " type=" XMLFile " / >

9 <simpleParam name=" steps " type=" i n t " defaul t=" 3 " / >
<simpleParam name=" t s t ep " type=" i n t " defaul t=" 5 " / >

11 <simpleParam name=" he igh t " type=" i n t " defaul t=" 33 " / >
<simpleParam name=" g r id1 " type=" s t r i n g " defaul t=" " / >

13 <simpleParam name=" g r id2 " type=" s t r i n g " defaul t=" " / >
<simpleParam name=" lowPixVal " type=" i n t " defaul t=" 0 " / >

15 <simpleParam name=" h ighPixVal " type=" i n t " defaul t=" 255 " / >
<simpleParam name=" p r o j e c t i o n " type=" s t r i n g " defaul t=" swissradar2km " / >

17 <simpleParam name=" pa t te rnS ize " type=" i n t " defaul t=" 60 " pe r tu rba te=" t rue " / >
<simpleParam name=" radarThreshold " type=" i n t " defaul t=" 2 " / >

19 <simpleParam name=" to le rance " type=" i n t " defaul t=" 1 " / >
<compoundParam name=" timeSpan " ac t i on =" del taTime " arguments=" ts tep , steps " / >

21 < / parameters>
<combinat ionProcedure>

23 < r e f c lass="AMFEvent " / >
< / combinat ionProcedure>

25 < / method>

Listing 4.6: Metadata for the AMF combination method.

The AMF combination method has several parameters, among them the most important
are:
outputFile indicates the combination procedure file. Furthermore, the directory where

this file is located is used as working directory during the metadata and data
combination phases.

steps determine how many forecasted images are generated.

tstep is the number of minutes between two consecutive forecasted images.

patternSize refers to an important parameter for the computation of the AMF. Its value
indicates the size (expressed in number of pixels) of the window used by the AMF
algorithm to perform the pattern matching between two consecutive images. The
value of this parameter plays a major role in the algorithm performances (more
details concerning this aspect can be found in Section 4.6 and in [Sch06]).

radarThreshold is the number of rain-rate classes3 to be ignored in the radar image. It
order to track only the motion of intense precipitation cells, it is possible to remove
the lower rain-rates classes by setting their intensity to the background value.

tolerance indicates the tolerance for the quality index (see details in 4.4).

timeSpan is a compound parameter, i.e. a parameter depending on other simple
parameters. timeSpan computes the reference time for the forecast evaluation.
Suppose, for example, that steps is 3 and tstep is 10 minutes. Three new images are
generated for the instants t0 + 10, t0 + 20 and t0 + 30; only the last one (t0 + 30) is
considered for the forecast evaluation (see 4.4).

The set of method parameters and their values constitutes the method configuration.
Furthermore, it is interesting to highlight the use of the attribute perturbate (described
in Section 3.2.1) that allows to perturb the value of patternSize. As we shall see later in

3Rain-rate classes are listed in Table 4.1.

4.4. Forecast evaluation 32

Figure 4.4: Forecast evaluation: the difference image and its histogram.

Section 4.6, this feature brought to light some interesting results.

As shown by Listing 4.6, the actual implementation of the combination method is given
by AMFEvent4 whose code can be found in Appendix C. This class concretely produces
the sequence of actions that is written to the procedure file. In particular, AMFEvent has
to handle the perturbation of the parameter patternSize.

4.4 Forecast evaluation

As we mentioned before, forecasted images are evaluated by comparing them against
the actually measured data. In fact, in order to determine which method configuration
produces the best result, we need a way to quantify the result’s quality. Result
evaluation is performed after the data combination phase, in the post processing phase
(see Subsection 3.4.1). Two verification systems have been developed and are described
in the following Subsections.

4.4.1 Quality flag

The quality function, given as input the forecasted and the measured images, returns
a quality flag value within 0 and 1 indicating the percentage of correct pixels in the
forecasted image. In this context, “correct” means pixels whose value in the forecasted
image is exactly the same as the measured one, or it falls within an acceptable error range
that can be selected by the user (see 4.3).

To compute the quality flag, a temporary image is firstly produced by performing a
linear combination that subtracts the measured image from the forecasted one. Then,
128 is added to the value of each pixel of the newly created image and, therefore, pixels
whose value is in [128± tolerance] are considered correct pixels. An example is given by
Figure 4.4: yellow regions represent correct pixels, reddish regions are under estimated
pixels and greenish regions are over estimated pixels. Once such an image has been

4memcaf.combine.AMFEvent

4.4. Forecast evaluation 33

produced, the quality flag can be computed as follows:

qflag =
Ny

Ny +Nr +Ng

where Ny is the number of yellow pixels, Ng the number of greenish pixels and Nr the
number of reddish pixels. The histogram of Figure 4.4 illustrates the distribution of pixels
around the value 128. In this histogram the black pixels (background) are not considered
as they would corrupt the meaning of the result. Note that, in the context of this project,
the tolerance value is always ±1, if not otherwise specified.

As we will discuss in more detail later, the quality flag value has to be considered with
care. In fact, even small shift errors in the forecasted image can result in very bad quality
scores, since our quality measure is very simple and does not use any pattern matching
technique. In the conclusions, we provide some hints on how the quality flag could be
improved. Despite this shortcoming, the results presented in this thesis remain valid
because the quality flag has been used to compare results, thus using relative measures
and not considering the quality flag’s absolute value.

4.4.2 Visual inspection

Ideally, if the forecast technique worked perfectly, there would be no difference between
the measured image and the forecasted one. Of course this is not the case and various kind
of errors have an impact on the result. Through visual inspection atmospheric motion
fields between the forecasted and the measured image are computed and the resultant
vector field qualitatively evaluated. The goal of this approach is to detect systematic shifts
that could be due, for example, to synchronisation issues or to panoramic distortions (e.g.
parallax) [Ric94].
Further developments could account of qualitatively asses these errors through root mean
square (RMS) analyses.

4.4.3 Output metadata

The combination method result consists of a directory hierarchy, so that each directory
contains the files corresponding to exactly one experiment (i.e. the result of the data
combination with a specific set of parameters). For example, imagine the patternSize
parameter is perturbed for the 5th of July 2005, at 12:15 UTC. Then, the directory
0507181215/Pattern50/ contains the files where patternSize is 50, 0507181215/Pattern60/ the files
where patternSize is 60 and so on. In all these directories, a file named result.xml summarizes
the parameter values for the current experiment: Listing 4.7 shows an example of such a
file.

4.5. Case studies 34

Event date C S
18th July 2005 ×
6th July 2006 ×
12th July 2006 ×
3d March 2006 ×
8th March 2006 ×
25th October 2007 ×

Table 4.2: Case studies: C stands for convective, S for stratiform.

1 < r e s u l t >
< g r i d > d e f a u l t < / g r i d >

3 <pa t te rnS ize>50< / pa t te rnS ize>
<percentCold>50< / percentCold>

5 <radarThreshold>2< / radarThreshold>
< to le rance>1< / to le rance>

7 < q u a l i t y >0.697952728< / q u a l i t y >
< / r e s u l t >

Listing 4.7: Output metadata, the file result.xml.

4.5 Case studies

So far we have seen how data and processing information is modeled and how the result’s
quality is evaluated. This Section illustrates the meteorological events taken into account
and the methodology used for the experiments.

4.5.1 Selected events

Precipitation events can be classified in two categories with different features: convective
precipitation and stratiform precipitation. Intuitively, it can be said that convective
precipitation tends to be very intense and isolated in space and time, while stratiform
precipitation is characterised by a lighter, widespread and long-lasting rain [10]. As
shown by Table 4.2, we selected six precipitation events: although the difference between
convective and stratiform precipitation is not always clear, it could be stated that three
of them are strongly convective, while the remaining ones consist in more widespread,
stratiform precipitations.

4.5.2 Methodology

Before executing the radar forecasting experiments described in Section 4.1, some satellite
- satellite forecast tests have been performed. IR 10.8 images have been forecasted for 15
minute steps, based on AMFs computed on the two previous images (also coming from
channel IR 10.8). The goal of this phase was to determine a reference quality we could
expect from the forecast of radar data.

The forecast method has then been applied to radar data, repeating the following
procedure through the observation timespan with a frequency of 15 minutes:

4.6. Results discussion 35

1. Retrieve the latest consecutive IR 10.8 satellite images and compute the
corresponding AMF.

2. Apply the previously derived AMF to the radar data (OMC or PJC) in order to
produce the forecast for a 5 minutes step.

3. Evaluate the result by comparing it against the measured data.
This procedure has been applied to the six events listed in Table 4.2 for both OMC and
PJC products.
Third, the patternSize perturbation has been executed for both satellite and radar
forecasted data, with values varying from 10 to 150 pixels.
Finally, radar data has been forecasted up to 120 minutes into the future, in order to
estimate how quality decreases over time.

4.6 Results discussion

According to the methodology described above, a number of experiments have been
carried out. The current Section discusses the results of these experiments.

4.6.1 OMC versus PJC

The six cases taken into account (see Table 4.2) have shown that the forecast of OMC
products yields better results with respect to PJC: this happened in 5 cases out of 6.
It is interesting to remark that for convective precipitation events the scores obtained by
OMC forecasted data are clearly better than the PJC ones. For example, for the 18th
July 2005 event, OMC produces a result with 8% more “correct” pixels (in the average)
with respect to PJC. As shown by Figure 4.5, this difference is far less significant for
stratiform precipitations like the one of 3d March 2006, where OMC is just 2% better
than PJC in the average.
The tolerance value used in these experiments is of ±1. Obviously, incrementing the
tolerance would produce better scores, up to 90% of correct pixels and more. This study,
however, is focused in the comparison between OMC and PJC products, rather than on
the analysis of absolute values obtained by both of them. With regard to this result, it
is important to note that PJC images have usually more background (black) pixels than
OMC images. The PJC product is the best estimation of ground precipitation and it
passes through a sequence of algorithms that eliminate the noise, which is not the case
for OMC [AAV98]. The lower number of non-background pixels in PJC images could
have an impact on the value produced by our quality function.

According to these first observations, OMC has been chosen for the following experiments.

4.6.2 Forecast tuning

The patternSize tuning has been carried for both satellite and radar forecasted data. The
results are quite interesting. Smaller pattern sizes (between 30 and 40 pixels) produce
better results for the forecast of satellite images, then, with the increase of the pattern

4.6. Results discussion 36

Figure 4.5: Quality assessement over time; 2 products (OMC, PJC) observing 2 events.

size, the quality diminishes. On the other hand, the trend is different for radar forecasted
data: small patterns give worse results than larger ones. A comparison between satellite
and radar data forecast is illustrated by Figure 4.6.
It is important to point out that the relation between pattern size and result quality is not
always so clear as for the 12th July 2006 event. Furthermore, the gain in term of absolute
value for the quality flag is small: for radar data, the difference between the worst and
the best score is of about 1%. Despite this fact, this analysis can play an important
role if considered under the cost - benefit point of view. The patternSize parameter
plays a major role in the running time of the AMF algorithm when it is run using the
pattern matching modality (see [Sch06]). The pattern matching lookup is repeated for
all the gridpoints of the image (the grid is also a parameter of the algorithm, as shown by
Listing 4.6). For each grid point, it is realistic to suppose that an operation is executed
for every pixel of the pattern [Ric94]. If the pattern size is n and the number of gridpoints
is m, the computational complexity of the algorithm is therefore

O(n2 ·m)

The size of the pattern has an important weight in this relation. As a consequence,
discovering that very large patterns produce only slightly better results can help in
optimising the use of computational resources.

4.6. Results discussion 37

Figure 4.6: Upper image: satellite forecasted images based on satellite retrieved AMF.
Lower image: radar forecasted images based on satellite retrieved AMF.

Concerning the OMC product forecast, the considered events showed that a good value for
patternSize is 60 pixels. This result, however, is mitigated by the fact that this observation
is not always so clear and the results vary from one event to another.

4.6.3 Forecast quality decay over time

The last question this work deals with is how forecast quality decreases over time. The
result obtained is coherent for all the considered events.
Figure 4.7 refers to the event of 8th March 2006 and shows how quality is related to the
forecast time. The blue dots represent the forecast quality, while the orange line is a
logarithmic regression over the same data set. The logarithmic regression fits the quality
decay with high correlation (R2 > 0.9).
The logarithmic regression function does not look like a “usual” logarithmic function. A
general logarithmic function is of the form y = a · ln(x) + b; the one we are considering
here, however, has a negative value for the coefficient a, which explains its position in the
first quadrant of the cartesian coordinates system.

In all the studied events, the threshold of 50% “correct” pixels is reached for forecasts of
about 15 minutes. However, remember that different tolerance values would strongly
influence this figure. As for the previous results, quality values do not have to be

4.6. Results discussion 38

Figure 4.7: Quality assessement against forecast period for one event and one product
(OMC).

considered as absolute values but, rather, they provide an indication on the observed
trends.

5
Conclusions

5.1 Results

A flexible framework to characterise meteorologically relevant data in order to support
R&D activities in the field of nowcasting has been designed and implemented. Cometa
consists in an XML database and a set of Java classes implementing the framework’s logic.
Metadata files describe the features of different data types and processing information;
functionalities are provided to verify the compatibility of data (metadata combination
phase) and to combine the data (data combination phase).

The implementation of a use case led to the following results. It has been shown that
this framework is a valuable tool for characterising and combining remote sensing data.
Cometa produced some first interesting results concerning instantaneous radar retrieved
rain field forecasts by means of satellite derived displacement vectors. Experiments
exploiting the parameter perturbation facility have shown that, for the six case studies
considered, the forecast of radar product Overview Max Composite (OMC) produces
better results than the Rain Composite product (PJC), especially for convective
precipitation events. Furthermore, the AMF algorithm seems to attain a good cost-
benefit compromise for pattern sizes around 60 pixels. The behaviour of the quality
decay against the increasing forecast time has been studied.

5.2 Outlook

Chapters 2 and 3 illustrated how the Cometa framework has been conceived and
implemented, while Chapter 4 presented a concrete use case. Similarly, this Section first
discusses some possible developments concerning the framework itself and, afterwards, it
exposes a few considerations about the radar and satellite data combination use case.

5.2.1 Framework extensions

eXist XML database has proven valuable for storing metadata files. However, the creation
of metadata to describe product features and processing information has still to be done
manually, by writing new metadata files (as described in Section 3.2). A very useful

39

5.2. Outlook 40

extension would consist of a guided procedure, possibly accompanied by a graphical user
interface, to ease the generation of metadata files.

An additional direction for future works is the creation of a specific syntax (e.g. a
dedicated XML namespace) to describe the steps composing a metadata combination
method. At the moment, the implementation of a new combination method requires the
writing of a new Java class. Ideally, it should be possible to describe a method without
requiring the user to have Java knowledge. This extension, although fairly difficult to
realise, would largely increase the user friendliness of Cometa.

Another improvement deals with the framework’s parameter perturbation feature. As
long as one or two parameters are perturbed, their complexity can be handled by the
programmer who writes the method’s code. However, it is often interesting to perturb
several parameters within the same experiment in order to study their correlation. This
approach leads to a combinatorial problem where all the varying parameters have to
be combined with each others. The combinatorics nature of the problem poses two
great challenges: first, the management of several perturbed parameters cannot be done
manually by the programmer and the framework should provide a way to help the
developer in this task. Second, a combinatorial problem has a factorial computational
complexity, which could require too much time to be treated.

5.2.2 Use case: improving first results

Predicting the displacement of a radar detected rain field in the alpine region is an
ambitious task. The approach proposed in Chapter 4 is meant to provide an example of
how Cometa can be used with a multi-sensor approach. First results show consistent
signals and are encouraging.

The definition of a more adequate quality flag is important for absolute assessments. This
could still be image based or entity based, like CRA [1]. Although very robust and much
more refined, CRA is complex to implement. An easier way to improve the quality flag
accuracy would be to examine the properties of the difference image, like histogram mean
and standard deviation.
A following step would be the RMS analysis of the residual displacement vectors computed
on forecasted and measured images and accounting for parallax induced errors.
Another improvement would be to apply a smoothing filter on the difference image, before
computing the quality flag. This operation would reduce the influence of shift errors, in
case of strong gradients affecting the radar image.

Additional work would involve the study of how radar derived displacement vectors can
predict the motion of radar detected rain fields, although orographic effects and a limited
correlation length have not to be neglected. Due to the presence of the Alps, the results
we would expect from such a method are limited; nevertheless, it is important to study
and quantify the outcomings of this approach.

5.2. Outlook 41

An interesting further development could derive from the combination of the forecast
technique presented in Chapter 4 with the Thunderstorm Radar Tracking (TRT), an
algorithm developed at MeteoSwiss. TRT is based on the OMC product and it is able to
detect severe thunderstorm cells and, by examining their motion in the past, it predicts
their displacement in the future. Various kinds of cooperation between the two algorithms
can be foreseen.

A
Common Acronyms

AMF Atmospheric Motion Field

API Application Programming Interface

CineSat A real-time short-range weather forecast software.

CRA Contiguous Rain Areas.

DOM Document Object Model

ECMWF European Centre for Medium-Range Weather Forecasts (Reading, UK)

FGDC Federal Geographic Data Committee, USA

JAXB Java Architecture for XML Binding

JDK Java Development Kit

JVM Java Virtual Machine

MeteoSwiss Federal Office of Meteorology and Climatology MeteoSwiss, Switzerland

MSG Meteosat Second Generation

NOAA National Oceanic and Atmospheric Administration, USA

42

43

NWG Nowcast Working Group

OMC Overview Max Composite (radar product)

PJC Ground precipitation estimate, composite image (radar product)

RASA Radar and Satellites team of MeteoSwiss

SAF/NWC Satellite Application Facility on support to Nowcasting and Very
Short-Range Forecasting

SAX Simple API for XML

TRT Thunderstorm Radar Tracking

VSRF Very Short-Range Forecasting

WMO World Meteorological Organisation

WWRP World Weather Research Program

XML Extensible Markup Language

B
License of the Documentation

Copyright (c) 2008 Lorenzo Clementi.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts.
The GNU Free Documentation Licence can be read from [4].
All the radar and satellite images of this report are property of MeteoSwiss and
reproduced with their permission.

44

C
CD-ROM and website of the project

On the CD-ROM of the project you will find:
• The source code of Cometa.

• The API (Javadoc) of Cometa.

• The binaries and sources of this documentation, as well as the pdf version.
Figure C.1 provides a tree view of the CD-ROM.
The content of the CD-ROM can also be downloaded from the official website of the
project: http://www.sosto.net/cometa.

|-- Cometaproject // Framework NetBeans project,
| // API, Javadoc
|-- Metadata // Contents of the Metadata DB
|
|-- Documentation
| ‘-- FirstMidTermReport // First report (pdf)
| // and slideshow
| ‘-- SecondMidTermReport // Second report (pdf)
| ‘-- FinalPresentation // Final presentation
| // (slideshow)
| ‘-- Thesis // Binaries (pdf, ps, etc.) and
| |-- appendix // sources of this document
| |-- figures // Sources of the figures.
| |-- chapters
|
|-- Software // The software used.

|-- JavaJDK // JavaJDK 1.5
|-- Netbeans // Netbeans IDE
|-- eXist // XML database

Figure C.1: Tree view of the content of the CD-ROM

45

http://www.sosto.net/cometa

References

[AAV98] AAVV. Operational Use of Radar for Precipitation Measurement in
Switzerland. VDF Hoschschulverlag AG der ETH Zürich, 1998.

[AAV03] AAVV. Nowcasting and the WWRP Report of WWRP Ad Hoc Nowcast
Working Group. Technical report, NWG, WWRP, 2003.

[AAV04] AAVV. A short introduction to Meteosat Second Generation (MSG). Technical
report, Eumetsat, Darmstadt, Germany, 2004.

[AAV07] AAVV. Atmospheric Motion Vectors and IWWG Matters. Report of the 35th
Meeting of the Coordination Group for Meteorological Satellites, 2007.

[AS00] J. T. Anderson and M. Stonebraker. Sequoia 2000 metadata schema for
satellite images. Technical report, EECS Departement, University of California
in Barkeley, USA, 2000.

[Cle07] L. Clementi. MEMcaf: Meteorological Metadata Combination Framework,
First mid-term report. Technical report, University of Fribourg and
MeteoSwiss, 2007.

[Cle08] L. Clementi. MEMcaf: Meteorological Metadata Combination Framework,
Second mid-term report. Technical report, University of Fribourg and
MeteoSwiss, 2008.

[GG07] G. Galli and I. Giunta. Inter-comparison of remote-sensing observations:
a new relational metadata framework on support to meteorological R&D,
work proposal for the Master thesis of Lorenzo Clementi. Technical report,
MeteoSwiss, 2007.

[KKE05] S. Q. Kidder, J. A. Kankiewicz, and K. E. Eis. Meteosat Second Generation
Cloud Algorithms for Use at AFWA. Technical report, DoD Center for
Geosciences and Atmospheric Research, Colorado State University, Colorado,
USA, 2005. [Retrieved February 22nd, 2008, from http://amsu.cira.
colostate.edu/kidder/BACIMO_2005.pdf].

[LZT04] C. Lin, I. Zawadzki, and B. Turner. Precipitation forecast based on numerical
weather prediction models and radar nowcasts. Technical report, Departement
of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec,
2004.

[NIS04] National Information Standards Organization NISO. Understanding metadata.
NISO Press, USA, 2004.

46

http://amsu.cira.colostate.edu/kidder/BACIMO_2005.pdf
http://amsu.cira.colostate.edu/kidder/BACIMO_2005.pdf

References 47

[OM03] E. Ort and B. Mehta. Java Architecture for XML Binding (JAXB). Technical
report, Sun Microsystems, 2003. [Retrieved February 20th, 2008, from http:
//java.sun.com/developer/technicalArticles/WebServices/jaxb/].

[Ric94] John A. Richards. Remote Sensing Digital Image Analysis, An introduction.
Springer-Verlag, 1994.

[Sch06] J. Scheibler. CineSat A real-time short-range weather forecast system. Software
user manual. GEPARD, Austria, 2006.

[TK04] U. D. Turdukulov and M.-J. Kraak. Visual exploration for Nowcasting
of precipitating convective clouds in time series of remote sensing data.
ESA-EUSC 2006 Workshop Proceedings [online], 2004. [Retrieved February
29th, 2008, from http://earth.esa.int/rtd/Events/ESA-EUSC_2006/Poster/
Po71_Turdukulov.pdf].

[Wil04] J. W. Wilson. Precipitation nowcasting: past, present and future. Technical
report, National Center for Atmospheric Research, Boulder Colorado USA,
2004. [Retrieved February 1st, 2008, from http://www.bom.gov.au/bmrc/
basic/old_events/hawr6/qpf/WILSON_KEYNOTE.pdf].

[WMO05] WMO. A Proposal for Changes to the WMO Core Metadata Profile.
Technical report, WMO, CBS Inter-programme expert team on metadata
implementation, Beijing, China, 2005.

[Zaw05] I. Zawadzki. Nowcasting of precipitation. Technical report, Departement
of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec,
2005.

http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
http://java.sun.com/developer/technicalArticles/WebServices/jaxb/
http://earth.esa.int/rtd/Events/ESA-EUSC_2006/Poster/Po71_Turdukulov.pdf
http://earth.esa.int/rtd/Events/ESA-EUSC_2006/Poster/Po71_Turdukulov.pdf
http://www.bom.gov.au/bmrc/basic/old_events/hawr6/qpf/WILSON_KEYNOTE.pdf
http://www.bom.gov.au/bmrc/basic/old_events/hawr6/qpf/WILSON_KEYNOTE.pdf

Referenced Web Resources

[1] CRA (entity-based) verification. http://www.bom.gov.au/bmrc/wefor/staff/
eee/verif/CRA/CRA_verification.html (accessed March 11th, 2008).

[2] Eumetsat. http://www.eumetsat.int/ (accessed February 18th, 2008).

[3] eXist XML database. http://exist.sourceforge.net/ (accessed December 7th,
2007).

[4] Free Documentation Licence (GNU FDL). http://www.gnu.org/licenses/fdl.
txt (accessed February 19th, 2008).

[5] NetBeans IDE. http://www.netbeans.org/ (accessed February 21st, 2008).

[6] Solaris 10 Operating System. http://www.sun.com/software/solaris/index.jsp
(accessed February 21st, 2008).

[7] Ultra 25 SUN workstation. http://www.sun.com/desktop/workstation/ultra25/
specs.xml (accessed February 21st, 2008).

[8] Geospatial Metadata. http://www.fgdc.gov/metadata (accessed December 5th,
2007).

[9] JAXB Reference implementation. https://jaxb.dev.java.net/ (accessed
February 19th, 2008).

[10] A website about Alpine meteorology. http://www.meteomontebaldo.it/ (accessed
February 28th, 2008).

[11] Consulting, writing, and research in XML and databases. http://www.rpbourret.
com/ (accessed December 7th, 2007).

[12] SAFNWC. http://nwcsaf.inm.es/ (accessed March 6th, 2008).

[13] Wikipedia. http://www.wikipedia.org/ (accessed February 18th, 2008).

[14] eXist XML database. http://xerces.apache.org/xerces-j/ (accessed December
5th, 2007).

[15] XML:DB Initiative for XML Databases. http://xmldb-org.sourceforge.net/
(accessed February 19th, 2008).

[16] XML-RPC Home Page. http://www.xmlrpc.com/ (accessed February 21st, 2008).

[17] XML Schema recommendation from W3C. http://www.w3.org/TR/xmlschema-0/
(accessed November 17th, 2007).

48

http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/CRA/CRA_verification.html
http://www.bom.gov.au/bmrc/wefor/staff/eee/verif/CRA/CRA_verification.html
http://www.eumetsat.int/
http://exist.sourceforge.net/
http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt
http://www.netbeans.org/
http://www.sun.com/software/solaris/index.jsp
http://www.sun.com/desktop/workstation/ultra25/specs.xml
http://www.sun.com/desktop/workstation/ultra25/specs.xml
http://www.fgdc.gov/metadata
https://jaxb.dev.java.net/
http://www.meteomontebaldo.it/
http://www.rpbourret.com/
http://www.rpbourret.com/
http://nwcsaf.inm.es/
http://www.wikipedia.org/
http://xerces.apache.org/xerces-j/
http://xmldb-org.sourceforge.net/
http://www.xmlrpc.com/
http://www.w3.org/TR/xmlschema-0/

Referenced Web Resources 49

[18] Introduction to XML Schema. http://www.w3schools.com/schema/schema_
intro.asp (accessed November 22nd, 2007).

http://www.w3schools.com/schema/schema_intro.asp
http://www.w3schools.com/schema/schema_intro.asp

Index

AMF Combination method, 29
Atmospheric Motion Field, 25

Base product, 16

Case studies, 32
Collection, 12
Combination

combination method, 7
combination procedure, 7

Combination method, 7
AMF combination method, 29
post processing, 18

Components
software components, 9

Compound parameter, 16, 30
Configuration

eXist configuration, 12
method configuration, 30

Data, 7
Difference image, 30

eXist, 12
eXist triggers, 13

Extensions, 37
framework extensions, 37
use case extensions, 38

Framework architecture, 9

GUI, 21

Information flow, 7

JAXB, 17
marshalling, 17
unmarshalling, 17

Metadata, 9, 14
metadata combination, 18, 20
method metadata, 7, 29
output metadata, 31
product metadata, 7, 25

Metadata combination, 18, 20
Metadata database, 12
Method, 7

combination method, 7
Method configuration, 14, 30
Method metadata, 14, 29

Nowcasting, 2

Observation, 7
Output metadata, 31

Parameter perturbation, 8, 16, 30
Post processing, 18
Precipitations

convective precipitation, 32
stratiform precipitations, 32

Procedure files, 16
Product, 7

base product, 16
Products hierarchy, 9
Products metadata, 16, 25

Quality flag, 30

Radiometric calibration, 25
Result discussion, 33
Result evaluation, 30

quality flag, 30
visual evaluation, 31

Simple parameter, 16, 30
Software

50

Index 51

software components, 9

Technical documentation, 12
Terminology, 7
Triggers, 10, 13
TRT, 38

Visual evaluation, 31

Xerces-J, 14
XML Schema, 14

	Introduction
	Motivation and goal
	A starting example
	Work organisation and schedule
	Structure of this document
	About this document
	Project name
	Notations and Conventions

	Framework overview
	Nowcasting, meteorological background
	State of the art: quick look
	Terminology

	Information flow
	Design and key elements
	Metadata
	Products hierarchy
	Software components
	Code organisation

	Framework technical description
	Metadata database: eXist
	eXist configuration
	Setting up triggers in eXist

	XML metadata and XML Schema validation
	Methods metadata
	Products metadata
	Procedure files

	XML to Java mapping: JAXB
	Metadata combination
	Implementing a new combination method
	How to add a combination method to Cometa

	Data combination
	Framework development and deployment at MeteoSwiss
	How to set up Cometa in another environment

	Cometa GUI

	Use case: radar data forecasting by means of satellite derived displacement vectors
	Description and goal
	Products
	Satellite images
	Radar images

	The AMF combination method
	Forecast evaluation
	Quality flag
	Visual inspection
	Output metadata

	Case studies
	Selected events
	Methodology

	Results discussion
	OMC versus PJC
	Forecast tuning
	Forecast quality decay over time

	Conclusions
	Results
	Outlook
	Framework extensions
	Use case: improving first results

	Common Acronyms
	License of the Documentation
	CD-ROM and website of the project
	References
	Referenced Web Resources
	Index

