
IDL Quick
Reference/Cheat/Crib Sheet

Remember: IDL is NOT case sensitive.

Introduction
IDL is a programming language similar to Fortran 90.
Important things to note are:

• IDL can perform array arithmetic operations.

• All keywords can be abbreviated, if unique
(plot,x,y,linestyle=1 is equivalent to plot,x,y,line=1).

• Different from C and Fortran, IDL has a dynamic
allocation of variable types.

• You can personalize your IDL command file which is
executed every time IDL is started. In Unix export

IDL STARTUP=name of startup file In Windows go to
the Control Panel,System Properties,Environment tab
and create a user variable named IDL STARTUP whose
value is the filename with full path.

• Spaces are ignored.

• IDL is Not compiled into an executable.

• Control-C Stops the active procedure.

Procedures and Functions

Procedure, arg1 [,arg2][,keyword1=value][,/keyword2].

result=Function(arg1 [,arg2][,keyword1=value][,/keyword2]).

• Filenames have to be the same as the name of the
procedure or function with the extension .pro.

• Functions must return a result. Procedures do not.

• Arguments in a procedure or function are passed by
their position in the call, where as keywords are not.

• Keywords can be set true by a backslash ie. \keyword.

• Functions are declared by using the word Function in
the declaration. Whereas Procedures have the word pro.

System Variables
Constant System Variables
!PI Single precision π
!DPI Double precision π
!DTOR Converts Degrees to Radians
!RADEG Converts Radians to Degrees
!VALUE Single and Double precision NaN and infinity

values.

Error Handling/Information System Variables
!WARN Reports use of obsolete routines.
!ERROR STATE Structure containing last error information.
!EXCEPT Controls when IDL checks for math error con-

ditions.
!MOUSE Status from the last cursor read operations.

Environment Variables

!D Structure of Device information.
!P Structure of Plotting information. All of which

have corresponding keywords in the plot proce-
dure.

!PATH The path for IDL routines.
!CPU Variable that supplies information about the state

of the system processor, and of IDL’s use of it.
!DIR Location of the main IDL directory.
!DIR PATH Indicates where IDL looks for Dynamically load-

able modules when started.
!JOURNAL 100 if journal is set to on. 0 if set off
!QUIET Suppresses informational messages if set to zero.
!VERSION Structure of the type, architecture, and version of

IDL.

Special Characters

Ampersand

(&)

Separates multiple commands on a single
line.

Apostrophe •Delimits string constants
(’) •Indicates part of octal or hex constants
Asterisk •Pointer Dereference
(*) •Muliplication operator

•Array subscript range
At Sign (@) •Include character: Used at the beginning of

a line to cause the IDL compiler to substitute
the contents of file whose names after the @
symbol for the line.
•In interactive mode, @ is used to execute a
batch file.

Colon (:) •Ends label identifiers.
•Separates start and end subscript ranges

Dollar Sign •Continue current command on the next line.
($) •In interactive mode. If it is the first symbol

in a line the following text is executed as an
operating system command. (in command
mode right?)

Exclamation

(!)

•First character of system variable names
and font-positioning commands.

Period (.) •First character of executive commands.
•Indicates floating point numbers.
•Indicates fields in a structure, such as struc-
ture.field

Question

Mark (?)

•Invokes online help when entered at the
command line
•Part of the ?: ternary operator used in con-
ditional expressions.

Semicolon

(;)

First character of a comment field.

Plus (+) •Number Addition
•Concatenates a string.

Data Types
Type Size Scalar Conversion Array
byte 8 0B byte() bytearr()
integer 16 fix(), nint() intarr()
long 32 0L long() lonarr()
float 32 0.0 float() fltarr()
double 64 0.0D double(0) dblarr()
complex 32,32 complex() complexarr()
dcomplex 64,64 dcomplex() dcomplexarr()
string 16 ’xyz’ string() strarr()

Types of Data Storage
Type Scope Dynamic Data

Type
Data type

Arrays Local Yes Must all be
the same

Named
Structures

Global No Can vary

Annoymas
Structures

Local No Can vary

Table Local No Can vary
Lists Local Yes ?
Associative
Arrays

Local Yes Can vary

System vari-
ables

Global Depends ?

Flow Control
if (expression) then a=1 else begin

b=2
endelse

for i=init,limit,stride do begin

print, array[i]
endfor

if(expression) then begin

A=1
endif

repeat begin

A = A * 2
endrep until (A gt B)

while eof(1) do begin

readf, 1, a, b, c
endwhile

label1:begin

print, a
end

case name of

’Moe’: begin

print, ’Stooge’
end

endcase

switch name of

’Moe’: begin

print, ’Stooge’
end

endswitch

Jump Statements
break Immediately exits from a loop

(for,while,repeat),case, or switch statements
without resorting to statements.

continue Immediately starts the next iteration of the en-
closing for, while or repeat loop.

goto,label Transfers program control to point specified by
label. goto statements are generally seen as bad
programming practice.

Arrays
• Arrays can be upto eight dimensions.

• IDL allows the use of arithmetic array operations
without the use of loops.

• Unsubscripted arrays are passed by reference.
Subscripted arrays are passed by value.

• Prior to IDL version 5 parentheses () were used to
create and index arrays. However this caused confusion
with the use of functions. In IDL 5.0 the square bracket
array syntax is used (although the parentheses were
kept for backwards compatibility).

• Array indexing starts at zero like in C. This is different
to Fortran where array indexing can start at any
number.

• Arrays are stored in column major format the same as
Fortran. This is not the same as C which is stored in
row major format.

Array Constructors
Concatenation through the use of brackets ie. arr = [arr1,arr2,]
indgen(n) arr=Integer indexed array elements from 0

to n-1 . Analogous are findgen, dindgen,
cindgen, sindgen.

intarr(n) Creates an n element array all set to zero.
Analogous are fltarr, dblarr, complexarr,
strarr.

make array(n,m) Creates an array N columns wide and M
rows long. Keywords can be used in the
function call to specifiy the data type.

Array Subscripts
arr(i,j) Subscript for a single value
arr(i,*) Column i of a two dimensional array.
arr(i:k,j:l) A 2D subarray of columns i to k, rows j to l.
arr(i:k:m) A 1D array starting at subscript i and finishing

at subscript k with a stride of m.
arr1(arr2) The elements of Array whose subscripts are

the values of Array2

Functions for Determing Array Properties
where(arr lt 50) Returns subscripts of nonzeo array elements

which match expression.
nelements(arr) Returns the total number of elements.
size(arr) Returns array size and type information.
min(arr) Smallest element of an array.
max(arr) Largest element of an array.
mean(arr) Mean value of all the elements of an array.
variance(arr) Variance of all the elements of an array.
stddev(arr) Standard deviation of all the elements of an

array.
moment(arr) Mean, variance, skew, kurtois, standard de-

viation, mean absolute deviation
total(arr) Total sum of all the elements of an array.

Array Reordering Functions
reform(arr) Changes array dimensions without changing

contents.
reverse(arr) Reverses order of array elemets.
rotate(arr) Rotates array.
transpose(arr) Takes the transpose of the array.
shift(arr) Shifts array elements.
sort(arr) Gets indices of sorted array elements.
uniq(arr) Gets indices of unique elements in a sorted

array.
PM(arr) Prints matrix ie. as row major instead of

column major.

Array Resizing Functions
rebin(arr) Resize an n-dimensional array by an integer

multiple or factor.
congrid(arr) Resize a one-,two- or three- dimensional ar-

ray to an arbitrary size (user-friendly ver-
sion)

interpolate(arr) Resize a one-,two- or three- dimensional ar-
ray to an arbitrary size (generalized version)

Structures
Unlike arrays structures allow different data types to be
packaged together into one entity. They are similar to
Structures in C and Derived Data types in Fortran.

Named structures
var={Structure name,Tag name1:Tag def1}

Unnamed structures
Useful for dynamic structures.
var={Tag name1:Tag def1}

Functions for working with structures
n tags(struc) Returns the number of variables

(tags) within a structure.
tag names(struc) Returns the name of each variable

(tag) within a structure.
create struct(’name ’,var) Create a structure, or append

variables to a structure.
struct assign() Merges the contents of two exist-

ing structures.

Pointers

Pointers in IDL are the same as, in C and Fortran.
ptr = ptr new(var) Creates ptr which points to var.
ptr = ptr new() Creates a null pointer called ptr.
ptr free, ptr Procedure to release the memory refer-

enced by ptr.
ptr valid(ptr) Returns true if a pointer is actually point-

ing to something. False if not.
*ptr Dereferences ptr.

Method of Passing Arguments

Passed by Reference Passed by Value
Scalars Constants
Arrays Indexed subarrays
Structures Structured elements
Undefined variables System variables

Expressions

Input/Output

StdIn has lun of 0, StdOut has a lun of 1 and StdErr has a lun
of 2
print,var Prints variables to StdOut.
read,var Reads variables from StdIn.
openr,lun,’file.txt’ Opens an existing file for read ac-

cess.
openw,lun,’file.txt’ Opens a new file for read and write

access.
openu,lun,’file.txt’ Opens an existing unformatted file

for read and write.
readf,lun,var Formatted read into var
readu,lun,var Reads unformatted files
printf,lun,var Formatted write of var
writeu,lun,var Writes var to an unformatted file.
close,lun Closes lun
close, /all Closes all luns
get lun,lun Procedure to allocate a free unit

number
free lun,lun Procedure to free a unit number

that was allocated by get lun.
tplate=ascii template() Starts GUI interface to setup a tem-

plate for reading in ascii data.
tplate=binary template()Starts GUI interface to setup a tem-

plate for reading in binary data.
read ascii(file name,

Template=tplate)

Reads ascii data using an existing
ascii template.

read binary(file name,

Template=tplate)

Reads binary data using an existing
binary template.

assoc Associates an array structure with
a file, allowing random access input
and output.

Format Codes

n Repeat count, specifying the number of times the for-
mat code should be processed.

+ An optional flag that specifies that positive numbers
should be output with a + prefix.

- An optional flag that specifies that string or numeric
values are left justified.

w Optional width specification. Width specifications and
default values are format-code specific.

d The number of digits after the decimal point.
m Minimum number of nonblank digits to be shown on

output.

[n]A[-][w] Transfers character values.
[n]F[±][w][.d] Single precision floating-point value
[n]D[±][w][.d] Double precision floating-point value
[n]E[±][w][.d][Ee] Floating point exponential format. The

width should include all characters. The
number of digits in the exponent is plat-
form specific.

[n]G[±][w][.d][Ee] The G format code uses the F output style
when reasonable and E for other values,
but displays exactly d significant digits
rather than d digits following the decimal
point.

[n]I[±][w][.m] Transfer integer values
Q Returns the number of characters that re-

main to be transfered during a read oper-
ation

’str’, H Output string values directly.
Tn Specifies the the absolute position
TLn Moves the position with a record to the

left.
TRn,nX Moves the position within a record to the

right.
: Terminates processing.
$ Suppresses newlines in output.
/ Starts a new line

Executive Commands

Executive commands must be entered at the command
prompt. They cannot be used in programs.

.compile Compiles program without running it

.go Executes previously compiled main pro-
gram.

.return Continues execution until the RETURN
statement.

.run Compiles and executes IDL commands
from files or keyboard.

.rnew [File1,File2] Erases main program variables and then
does .RUN

.reset session Resets much of the state of an IDL ses-
sion without requiring the user to exit and
restart the session.

.step [n] Executes one or n statements from the
previous position. (Useful for debugging)

.trace Similar to .CONTINUE, but displays
each line of code before execution.
(Useful for debugging)

Error Handling
catch,.. Procedure which intercepts and processes

error messages and continues program ex-
ecution.

message,.. Procedure which issues error and informa-
tional messages.

on error,n Designates the error recovery behavior. The
default is to stop in the routine which has
caused the error.

on ioerror,label Declares I/O error exception handler.
strmessage(Err) Returns the text of a given error number.

Help
help,var Displays information on var (data type, size, mem-

ory usage (\mem), details of a structure (\struc) etc)
via the appropriate keywords.

? starts built-in help tool.
idlhelp & Starts help tool from the OS shell all IDL-included

functions and procedures described in detail.
idlman To display pdf manuals for IDL.

File Management Functions
file delete, ’file’ Deletes the associated file.
file search(*.pro) Returns an array of strings containing all

the file names that match.
file mkdir, Makes a new directory.
file test Tests a file or directory for existence and

other specific atributes.
file info Returns status information about a file.
Fush, lun Forces, data from memory buffers to disk.
point lun,lun,pos Sets file pointer to position in bytes.
eof(lun) Tests a file unit to see if the pointer is at

the end of a file. Returns true or false.
fstat(lun) Returns a structure of status informa-

tion on the file unit. (To view it use
help,/struc)

cd, ’../dir’ Changes directory
ls List files in current directory.

Time Management Functions

timegen() Generates an array of time values.
caldat() Converts Julian to Calendar.
julday() Converts Calendar to Julian.
systime() The current system time.

Debugging

breakpoint,index Sets and clears breakpoints for debugging.
shmdebug(enable) Print debugging information when a vari-

able loses reference to an underlying
shared merory segment.

String Manipulation

+ Concatonates strings
strtrim(str,flag) Removes blanks from string, Flag - 0

front, 1- back, 2 - both
strcompress() Removes blanks spaces within a string.
strmid() Extracts a substring from a string.
strpos() Position of a substring within a string.
strput() Inserts the contents of one string into an-

other.
strjoin() Concatenates all elements into a scalar

string.
strsplit() Splits string into an array of substrings.
strmatch() Compares search string against input

string expression.

Code Optimization

1. Use of arrays rather then loops. As IDL is optimized for
array arithmetic operations.

2. Always free memory associated with a pointer when it
is not needed anymore to avoid memory leaks.

3. Use IDL intrinsic procedures where you can rather the
writing your own or using a spawn procedure. As they
are optimized for speed.

4. When creating a large array which is going to be filled
with data straight away. Use the ”nozero” keyword in
the array creation function.

5. Keep the memory requirement of your application
smaller than the physical memory to avoid performance
penalties by swapping.

6. Write expressions in an order which minimizes the
about of computation needed to evaluate it.

7. Access large array data in machine address order.(IDL
is column-major)

amoeba() Minimizes a function using the downhill
simplex method.

constrained min,.. Minimizes a function using the General-
ized Reduced Gradient Method.

dfpmin,.. Minimizes a function using the David-
Fletcher-Powell method.

powell,.. Minimizes a function using the Powell
method.

simplex() Function which uses the simplex method
to solve linear programming problems.

temorary(var) Returns a temporay copy of a variable,
and sets the original variable to undefined.
Conserves memory when performing op-
erations on large arrays.

delvar, var Deletes a variable from the main IDL pro-
gram level freeing any memory used.

memory() Returns a vector of information about the
amount of dynamic memory currently in
use by the IDL session.

profiler,.. Procedure to accesses the IDL Code Pro-
filer used to analyze performance of appli-
cations.

time test2,.. Procedure to perform speed benchmarks
for IDL.

Session Commands
save,var1,var2..,file name=’file.dat ’

restore,’file.dat’

journal, ’name.jou’ Creates journal of output.
spawn Starts OS shell

Differences between PV-Wave and IDL
help in IDL is the same as info in PV-Wave
epoch of the PV-Wave julian day is 2361220.5 days behind
IDL julian day.

Useful Development Environment
Shortcuts
Ctrl + Space - Content assist

Useful Links
www.ittvis.com

www.ittvis.com/services/techtip.asp?ttid=1799 - Article
on code optimization.
www.ittvis.com/ProductServices/IDL/

ProductDocumentation/tabid/206/language/en-US/Default.

aspx - Product documentation

www.astro.washington.edu/deutsch/idl/htmlhelp -
Searchable index of publicly available IDL procedures or
functions.
comp.lang.idl-pvwave - Usenet group.

This card was created using LATEX. Released under the GNU
general public license. $Revision: 0.724 $, $Date: 24/10/2008 $.
To contact me regarding improvements/mistakes on this sheet or
to download the latest version please follow the links from:
http://www.BenjaminEvans.net

www.ittvis.com
www.ittvis.com/services/techtip.asp?ttid=1799
www.ittvis.com/ProductServices/IDL/ProductDocumentation/tabid/206/language/en-US/Default.aspx
www.ittvis.com/ProductServices/IDL/ProductDocumentation/tabid/206/language/en-US/Default.aspx
www.ittvis.com/ProductServices/IDL/ProductDocumentation/tabid/206/language/en-US/Default.aspx
www.astro.washington.edu/deutsch/idl/htmlhelp

	Introduction
	Procedures and Functions
	System Variables
	Constant System Variables
	Error Handling/Information System Variables
	Environment Variables

	Special Characters
	Data Types
	Types of Data Storage
	Flow Control
	Jump Statements

	Arrays
	Array Constructors
	Array Subscripts
	Functions for Determing Array Properties
	Array Reordering Functions
	Array Resizing Functions

	Structures
	Named structures
	Unnamed structures
	Functions for working with structures

	Pointers
	Method of Passing Arguments
	Input/Output
	Format Codes
	Executive Commands
	Error Handling
	Help
	File Management Functions
	Time Management Functions
	Debugging
	String Manipulation
	Code Optimization
	Session Commands
	Differences between PV-Wave and IDL
	Useful Development Environment Shortcuts
	Useful Links

