

Serie: 07 Deadline: $11.05.07 \rightarrow 08h$

Exercise 1

Consider the following opinion shift table $N = (n_{jk})$, cross-classifying the attitude of 493 randomly selected Danes towards the EEC in October 1971 (rows j = 1, ..., 3) by their attitude towards the EEC in December 1973 (columns k = 1, ..., 3)

	(yes	no	undecided	total	١
	yes	167	36	15	218	
N =	no	19	131	10	160	(1)
	undecided	45	50	20	115	
	total	231	217	45	493	/

- 1. Compute the transition matrix P associated to the contingency table N.
- 2. Compute the stationary distribution π associated to the transition matrix P.
- 3. Suppose the dynamics of opinion shift in 26 months (= December 1973 minus October 1971) to obey a Markov process with the constant transition matrix P.
 - (a) If everybody were initially in favor of the EEC (= "yes"), what is the proportion of people remaining in the YES state after 26 months? After 52 months? In the long run?
 - (b) What is the long run uncertainty on the state of a person?
 - (c) What is the conditional uncertainty on the state of a person, knowing its state 26 months before?
 - (d) Without doing the computation, write down the formula giving the conditional uncertainty on the state of a person, knowing its state 52 months before.

Exercise 2

Given an unfair dice with the following probability distribution:

1	2	3	4	5	6
0.12	0.15	0.16	0.17	0.18	0.22

- 1. Construct a binary Tunstall code with 4 bits.
- 2. Decode 000011110011
- 3. Encode 2253
- 4. This code suffers from a serious problem that makes it practically unusable. Describe this problem. Why does this problem exist and how could it be solved.